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Dilatometric determination of piezoelectric 
constants: application to Cu(1)-halides 

A. BOESE, E. MOHLER, R. P I T K A  
Physikalisches Institut der Universita't Frankfurt am Main, Germany 

A dynamic dilatometer for measuring piezoelectric strain constants of insulators and 
semiconductors is described. The application of modulation techniques allows precise 
measurements on samples as small as 1 mm 3 and of fairly high electrical conductivity. 
Results for the piezoelectric constants of zinc-blende type CuCI, CuBr and Cul are 
reported. The piezoelectric behaviour is related to properties of the chemical bond. 

1. Introduction 
Among the standard methods to measure 
piezoelectric constants of insulators are the 
determination of resonance and antiresonance 
frequencies of piezoelectric vibrators and the 
measurement of charge or voltage induced by 
strain [1 ]. In semiconducting materials, when the 
piezoelectric polarization is effectively screened 
by free carriers, the piezoelectric Hall effect can 
be used to obtain the piezoelectric coefficients 
[2]. The converse piezoelectric effect, which 
consists in straining the crystal by application of 
an electric field, has not been as frequently 
employed to determine piezoelectric constants 
[1]. 

In this paper we describe a simple dilatometer 
which uses a capacitor transducer and lock-in 
techniques to measure small sample strain caused 
by electric fields. The method can be applied to 
very tiny samples (as small as 1 mma), whose 
electrical conductivity may range within wide 
limits. Therefore, it is particularly useful for 
investigation of materials not available as large 
single crystals of high quality. As an applica- 
tion, we report measurements of the piezoelectric 
constants for the cuprous halides CuC1, CuBr 
and CuI. 

The Cu(I)-halides are interesting because they 
are members of a large family of binary com- 
pounds which crystallize in the zinc-blende or 
wurtzite structures. An important parameter to 
characterize these compounds is their ionicity. 
In the spectroscopic ionicity scale introduced by 
Phillips [3] the Cu(I)-halides are located near the 
maximum value of ionicity compatible with 
tetrahedrally co-ordinated structures. Com- 
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pounds with still larger ionicity tend to crystal- 
lize in the rock salt or caesium chloride struc- 
tures. To test predictions of physical properties 
based on the ionicity scale [3] it is desirable to 
complete the knowledge of material constants of 
these highly ionic compounds. 

2. Experimental 
2.1. Dilatometer description 
The mechanical construction of the dilato- 
meter is sketched in Fig. 1. The lower end of the 
strained sample is held fixed by a support, the 
displacement of the upper end is transferred to a 
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Figure 1 Mechanical dilatometer construction. 
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capacitor pick-up which is part of a VHF 
oscillator circuit. A change in sample length 
results in an oscillator frequency change which 
can be measured with high accuracy. For  
calibration, the gap between the condensor 
plates is varied in definite steps with a micro- 
meter screw. Depending on the mounting of the 
sample electrodes, longitudinal or transverse 
strain with respect to field direction can be 
measured. With suitable sample cuts, it is 
possible to determine all of the 18 piezoelectric 
coefficients in the most general case of a triclinic 
crystal. The sample temperature can be changed 
by immersing the lower dilatometer part into 
various cooling liquids. 

The electronic set-up for a dynamic operation 
of the dilatometer is described in Fig. 2. A low 
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Figure 2 Elec t ron ic  b lock  d i a g r a m .  

frequency (20 Hz) sinusoidai voltage from an 
audio oscillator is applied to the sample. The 
periodic strain modulates the VHF oscillator 
frequency. The mean frequency, f ,  is measured 
with a frequency counter. The frequency devia- 
tion, AT, is found by demodulation of the signal 
in an FM radio tuner combined with a phase 
sensitive detector, which is locked to the audio 
oscillator. An automatic frequency control 
(AFC) stabilizes the tuner to the linear part of 
the system's demodulation characteristic. 

Absolute calibration of the whole set-up is 
performed by recording the oscillator frequency, 
f ,  as a function of the micrometer screw dis- 
placement, x. The sample length change, ,dx, 
which corresponds to a given tuner signal output 
is then obtained from the demodulator charac- 
teristic of the tuner and by interpolating the 
functionf(x).  The overall accuracy of this static 
calibration is estimated to be better than 1 ~ if 
the operating frequency is sufficiently below any 

resonances of the mechanical transducer con- 
struction. The final sensitivity limit of the 
dilatometer depends on environmental noise, a 
lower limit being about A x  = 10 -1~ cm. 

An important advantage of the modulation 
technique compared to static measurements is 
its capability to separate piezoelectric strain 
from strain caused by electric heating of the 
sample. Since the phase sensitive detector is 
tuned to the frequency of the electric field, but 
the sample temperature is modulated with twice 
this frequency, the system will only respond to 
the polar piezoelectric effect. For this reason, 
piezoelectric measurements can also be per- 
formed on low ohmic materials, as far as a 
homogeneous field can be maintained in the 
specimen. Therefore, good ohmic contacts have 
to be prepared at the sample surface. 

2.2. Sample preparation 
The cuprous halide single crystals were orientated 
with the help of cleavage and prepared by 
cutting and grinding. Some attention is necessary 
to avoid twinned samples. Electric contacts were 
prepared with silver paint. Fringing of the 
electric field was reduced by imbedding the 
sample between projecting electrodes. A con- 
venient sample geometry is found by an analysis 
of the piezoelectric tensor. 

In the zinc-blende structure, the piezoelectric 
matrix d~: has only one independent component 
d14 = d~5 = d36, other components vanish. For  
an electric field of strength E directed along the 
unit vector (c~, /3, 7) the sample strain tensor 
reduces to the form [4] 

= {~ o d l , .  E .  ( l )  
o~ 

Hence, the piezoelectric constant dr4 is given by 

Ax/x 
' ~  = e(~ 'Y7 + YT'~ + 7'~'~) (2) 

where A x / x  is the relative sample dilation along 
the direction (c~', /3', 7'). 

It is most convenient to choose field directions 
where a longitudinal piezoelectric effect appears, 
for example ~ = /3 = 7 = c( = /3' = 7' = 1/(3. 
In that case Equation 2 simplifies to 

dl~ = ~ / 3 A x / V  (3) 

where V is the voltage applied to the sample. As 
an additional advantage, a small misorientation 
of the sample will only cause a negligible error 
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of d~4 in this configuration. For  example, a 
deviation of as large as 5 o will only result in an 
error of 2 %. 

3. Results 
Table I contains the piezoelectric strain constant 
dr4 for three Cu(I)-halides as determined by the 
dilatometric method. The results are averages 
from at least five different samples for each 
compound. The error limits are determined 
essentially by the quality of the sample material 
available. Identical values of dl~ were found at 
room temperature and at liquid nitrogen 
temperature, within the experimental accuracy. 
The absolute sign of the piezoelectric constants 
was not determined. For CuC1 it isknown that the 
sign is positive [5]. 

Table I also lists the piezoelectric constants 
el4 = d14 " c ~  E, gl~ = d l J  ET and hi4 = d14" c4~ /  
E s calculated from the measured d~4, the elastic 
stiffness c44 ~ and the permittivities E T and c s [4]. 
The elastic constants were taken from Hanson 
et al. [6], the dielectric constants from Plendl 
et aL [7]. Error limits of g~4 and h~4 are not 
quoted, because of uncertainties in the e values. 

The piezoelectric constants of the cuprous 
halides were recently determined with the 
resonator method by Inoguchi et al. [8] (CuC1) 
and by Hanson et  al. [61 (CuCI, CuBr, CuI). The 
CuC1 values obtained by these two groups differ 
by about 30 %. The measurements presented in 
this paper are in favour of the low temperature 
values by Hanson et al. [6], with which they are 
in excellent agreement. However, it should be 
realized that we could not reproduce the marked 
decrease ( ~  17 %) of the CuC1 value at room 
temperature which was observed by Hanson and 
co-workers. It seems that even a small sample 
conductivity will induce errors in the determina- 
tion of piezoelectric constants with the resonator 
method. As outlined above, sample conductivity 
will cause less problems with the method de- 
scribed here. 

4. Discussion 
A variety of models for the microscopic origin 
of piezoelectricity has been discussed in the past 

[9]. As outlined by Arlt and Quadfiieg [2] the 
piezoelectric effect may be decomposed into 
three different microsopic contributions, namely 
the generation of a polarization by the dis- 
placement of the ions, by electronic polarization, 
and by change of ionicity. These three con- 
tributions are of the same order of magnitude 
and tend to cancel each other [2]. For this 
reason it is difficult to predict the sign and 
magnitude of piezoelectric constants quantita- 
tively on the basis of a first principles calculation, 
since the different contributions cannot be 
determined with sufficient accuracy. 

An alternative way is the use of pheno- 
menological models of piezoelectricity. In this 
case, model parameters are fitted to experi- 
mental data. One is then primarily interested in 
systematic trends of these parameters with 
properties of the chemical bond, e.g. with the 
ionicity of the compound. Relations of this 
kind were first suggested by Birman [10] and 
were discussed for tetrahedrally bonded III-V 
and II-VI compounds by Phillips and Van 
Vechten [11]. Inclusion of the cuprous halide 
results will allow to extend these considerations 
to I-VII-compounds. 

For  a discussion of systematic trends in 
piezoelectric constants we use a phenomeno- 
logical model of piezoelectricity suggested by 
Birman [10]. In this approach, the chemical 
bond between two nearest neighbours is charac- 
terized by a bond dipole moment p(r) which is 
always directed along the bond and changes its 
magnitude with the bond length r. In the tetra- 
hedrally co-ordinated zinc-blende structure the 
different bond moments cancel in the unstrained 
state. In a strained crystal this is no longer the 
case, and a net polarization arises because of 
bond bending and bond stretching. 

Birman derived the following expression for 
the piezoelectric stress constant et4 of the zinc- 
blende lattice: 

{ el4 = 4~14qs - (qs - qa) ,~--~ (4) 

~/3r ~ + c~t. 

T A B L E  I Piezoelectric constants of  the cuprous halides (mks units) 

Material d14 (m V -1) el~ (C m -2) g14 (m 2 C -1) h14 (V m 1) 

CuC1 (2.72 4- 0.05) x 10 -11 (3.70 ~ 0.10) • 10 -1 4.10 • 10 1 5.57 x 109 
CuBr (1.60 4- 0.10) • 10 -11 (2.22 :t= 0.15) • 10 -1 2.26 • 10 1 3.14 x 109 
CuI  (0.70 • 0.10) • 10 -11 (1.27 • 0.20) • 10 -1 0.52 x 10 -1 0.95 x 109 
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Here, r 0 is the initial bond length, "/14 is the 
nonvanishing component of the relative internal 
strain tensor, (rt is the density of elementary 
tetrahedra, and qs and qa are two parameters to 
characterize the bond. The "static effective 
charge" q~ is defined by qs = F(ro)/ro and the 
"dynamic effective charge" qa by qa = (~F/Or) 

(r0). 
It would be possible to determine the bond 

parameters qs and qa from known values of 
e~, r 0 and ~'~4 if an additional relation involving 
qs and qa were available. We obtain such a 
relation by expressing the transverse optic charge 
eT (Born's charge) in terms of the effective 
charges qs and qd. The transverse charge eT is 
defined by PT = er U where /~T is the dipole 
moment per tetrahedron induced by a displace- 
ment, u, between the two sublattices of the zinc- 
blende structure, moved in the absence of an 
internal macroscopic field. It is related to 
experimentally observable quantities by 

Moo2, 2 
eT2 = 47r~r----~ " (e~ - "~) (5) 

where M is the reduced mass of an ion pair, E 0 
and e~o are the static and high frequency 
dielectric constants, and cot is the angular 
frequency of the transverse optic mode. In the 
Birman model we find for the transverse charge 

8 4 
e T =  - - - ~ q s - -  ~ q a .  (6) 

Note that both the piezoelectric constant e~ 
and the effective charge eT were calculated with 
the same boundary condition, namely that the 
macroscopic electric field vanishes. No local 
field corrections were applied; we assume them 
to be incorporated into qs and qd. 

With respect to more recent work [11, t2] 
Birman's result and Equation 6 will be rewritten 
in a slightly different form. We eliminate r0 = a 
x/3/4, at = 4/a 3 and ~/t4 = - ~a/4 with the help 
of the cubic lattice constant a and Kleinman's 
bond bending constant ~. Because there are four 
bonds per atom we introduce the static charge 
per metal ion Qs = - 4qs instead of the static 
charge qs per bond. The metal ion is put into the 
origin of the zinc blende co-ordinate system. It is 
further convenient to define an effective charge 
redistribution exponent 3 through the relation 
F(r) = qs(r/ro)~.r in analogy to Phillips and Van 
Vechten [11 ]. The dynamic charge is then given 
by qd = ((3 + 1) qs and we finally get 

and 

{' } e14a 2--- Qs ~ (~ - 1) + ~ (7) 

e T =  Q s ( ~ +  1) (8) 

substituting Equations 4 and 6. The influence of 
the various bond changes on the piezoelectric 
behaviour may now be seen more clearly. For 

= 1 the crystal shows pure bond bending [12], 
with no changes in bond lengths. In this case the 
charge redistribution term vanishes and only the 
static charge contributes to el~a ~. For ~ = 0 the 
internal strain vanishes and the bond geometry 
is altered by external strain alone. Under this 
condition a movement of the bond charges 
without charge redistribution does not give rise 
to a net polarization. It is the redistributed 
charge within the bonds which leads to a 
piezoelectric polarization in this case. In general, 

is near ~ = 0.7 [13] so that both the static and 
redistributed charge contribute to e14. 

Equation 7 for the piezoelectric constant el, 
is different from the result obtained by Phillips 
and Van Vechten [11 ]. As already pointed out 
by Martin [15] the electric boundary condition 
connected with the definition of e~4 does not 
allow to associate Callen's effective charge [I4] 
with the internal strain term of e14. According to 
Martin [15], and as seen above by inspection of 
Equations 7 and 8, it is the transverse optic 
charge e~ which is connected with the internal 
strain term ~. 

Fig. 3 shows a histogram plot of the static 
charge Qs and the charge redistribution exponent 
(3 versus the spectroscopic ionici tyf i  [3, 16] for 
various III-V and II-VI compounds and the 
I-VII cuprous halides. Qs and (3 were calculated 
with the help of Equations 7 and 8 using e~4, 
and eT data for the III-V and II-VI compounds as 
listed* by Martin [15]. The cuprous halide values 
for eT and ff were determined from infra-red 
data by Plendl et al. [7] and from elastic con- 
stants by Hanson et al. [6]. Equation 5 was used 
to determine ew and Martin's phenomenological 
model [13] served to calculate ~. 

It is seen in Fig. 3 that the model parameters 
Qs and (3 show definite trends with ionicity. For 
purely ionic binding ( f i  = 1), the static charge 
Qs reaches the limiting value Qs = 1 e, whereas 
the charge redistribution exponent (3 becomes 
zero. For purely covalent binding (f i  = 0), one 

*ZnO data (Qs/e = 1.25, ~ = 2.04,fi = 0.616) are omitted in Fig. 3 for the reason quoted in [11l. 
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Figure 3 Correlation of bond parameters Qs and 3 with 
the spectroscopic ionicity [3] for various tetrahedrally 
co-ordinated compounds. 

expects Qs to vanish, as it is the case. The charge 
redistribution exponent 3 = (01nF/Olnr) - 1 
which is strictly not  defined in the limit o f  purely 
covalent compounds ,  seems to reach 6 ~ 20 
near f I  = 0. Of  course, el~ and eT still vanish in 
this limit because Qs goes to zero. The overall 
tendency of  Qs and ~ can be roughly approxi- 
mated by taking Qs as directly propor t ional  to 
the ionicity f~ and 3 as propor t ional  to the 
covalency (1 - f i ) .  The redistributed par t  8 �9 Qs 
o f  the dynamic charge Qa = - 4qa then shows 
a maximum near f i  = 0.5. This is reasonable 
since the amount  o f  redistributed charge is 
expected to be largest for medium ionicity. I t  
would be illustrative to investigate this behaviour  
of  the static and dynamic charges by charge 
density calculations on the basis of  pseudo- 
potentials, similar to those performed by Walter  
and Cohen [17]. 

As for the cuprous halides, the model  para- 
meters Qs and 3 fit quite well into the systematics 
based on the ionicity scale. The nearby stability 
limit of  tetrahedrally co-ordinated structures [3] 
does not  seem to have such a marked influence 
on the piezoelectric behaviour as on the elastic 
properties [6]. On the other hand, the extreme 
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ionicity of  the cuprous halides leads to large 
piezoelectric coefficients. The reason for this is 
that  the charge redistribution part  o f  the piezo- 
electric coeff• is small compared  to the bond  
bending contribution. For  less ionic compounds ,  
like for most  of  the I I -VI  compounds ,  the bond 
bending term is partly cancelled by the charge 
redistribution term. For  the I I I -V compounds  
the charge redistribution term already dominates 
and the piezoelectric constants change their sign 
at about  f i  = 0.5. Because Qs is already very 
small in this region, the values of  the piezoelectric 
coefficients are generally smaller than those of  the 
cuprous halides. 
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